Fixed Point and Aperiodic Tilings
نویسندگان
چکیده
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gács in the context of error-correcting computations. The flexibility of this construction allows us to construct a “robust” aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.
منابع مشابه
Fixed-point tile sets and their applicationsI
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This const...
متن کاملFixed-point tile sets and their applications
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This const...
متن کاملEffective Closed Subshifts in 1D Can Be Implemented in 2D
In this paper we use fixed point tilings to answer a question posed by Michael Hochman and show that every one-dimensional effectively closed subshift can be implemented by a local rule in two dimensions. The proof uses the fixed-point construction of an aperiodic tile set and its extensions.
متن کاملFixed point theorem and aperiodic tilings
We propose a new simple construction of an aperiodic tile set based on self-referential (fixed point) argument. People often say about some discovery that it appeared “ahead of time”, meaning that it could be fully understood only in the context of ideas developed later. For the topic of this note, the construction of an aperiodic tile set based on the fixed-point (self-referential) approach, t...
متن کاملSymbolic Dynamics and Tilings of R
Aperiodic tilings of Euclidean space can profitably be studied from the point of view of dynamical systems theory. This study takes place via a kind of dynamical system called a tiling dynamical system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 15 شماره
صفحات -
تاریخ انتشار 2008